Copied to
clipboard

G = C42.23Q8order 128 = 27

23rd non-split extension by C42 of Q8 acting via Q8/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C42.23Q8, C42.103D4, C424C4.7C2, C2.5(C428C4), C4.81(C4.4D4), C22.48(C8○D4), (C22×C8).20C22, C4.35(C42.C2), C2.C42.17C4, C23.309(C22×C4), (C2×C42).254C22, (C22×C4).1622C23, C22.7C42.4C2, C22.80(C42⋊C2), C2.8(C42.7C22), C2.11(C42.6C22), (C2×C4⋊C8).25C2, (C2×C4).44(C4⋊C4), C22.95(C2×C4⋊C4), (C2×C4).338(C2×Q8), (C2×C4).1520(C2×D4), (C2×C4).930(C4○D4), (C22×C4).114(C2×C4), SmallGroup(128,564)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C42.23Q8
C1C2C4C2×C4C22×C4C2×C42C424C4 — C42.23Q8
C1C23 — C42.23Q8
C1C22×C4 — C42.23Q8
C1C2C2C22×C4 — C42.23Q8

Generators and relations for C42.23Q8
 G = < a,b,c,d | a4=b4=c4=1, d2=bc2, ab=ba, cac-1=ab2, dad-1=a-1, bc=cb, bd=db, dcd-1=a2c-1 >

Subgroups: 172 in 108 conjugacy classes, 60 normal (10 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, C23, C42, C42, C2×C8, C22×C4, C22×C4, C2.C42, C4⋊C8, C2×C42, C2×C42, C22×C8, C22.7C42, C424C4, C2×C4⋊C8, C42.23Q8
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C4⋊C4, C22×C4, C2×D4, C2×Q8, C4○D4, C2×C4⋊C4, C42⋊C2, C4.4D4, C42.C2, C8○D4, C428C4, C42.6C22, C42.7C22, C42.23Q8

Smallest permutation representation of C42.23Q8
Regular action on 128 points
Generators in S128
(1 65 47 77)(2 78 48 66)(3 67 41 79)(4 80 42 68)(5 69 43 73)(6 74 44 70)(7 71 45 75)(8 76 46 72)(9 100 122 20)(10 21 123 101)(11 102 124 22)(12 23 125 103)(13 104 126 24)(14 17 127 97)(15 98 128 18)(16 19 121 99)(25 63 105 95)(26 96 106 64)(27 57 107 89)(28 90 108 58)(29 59 109 91)(30 92 110 60)(31 61 111 93)(32 94 112 62)(33 83 113 51)(34 52 114 84)(35 85 115 53)(36 54 116 86)(37 87 117 55)(38 56 118 88)(39 81 119 49)(40 50 120 82)
(1 97 5 101)(2 98 6 102)(3 99 7 103)(4 100 8 104)(9 72 13 68)(10 65 14 69)(11 66 15 70)(12 67 16 71)(17 43 21 47)(18 44 22 48)(19 45 23 41)(20 46 24 42)(25 51 29 55)(26 52 30 56)(27 53 31 49)(28 54 32 50)(33 59 37 63)(34 60 38 64)(35 61 39 57)(36 62 40 58)(73 123 77 127)(74 124 78 128)(75 125 79 121)(76 126 80 122)(81 107 85 111)(82 108 86 112)(83 109 87 105)(84 110 88 106)(89 115 93 119)(90 116 94 120)(91 117 95 113)(92 118 96 114)
(1 119 103 95)(2 64 104 40)(3 113 97 89)(4 58 98 34)(5 115 99 91)(6 60 100 36)(7 117 101 93)(8 62 102 38)(9 82 70 106)(10 27 71 51)(11 84 72 108)(12 29 65 53)(13 86 66 110)(14 31 67 55)(15 88 68 112)(16 25 69 49)(17 57 41 33)(18 114 42 90)(19 59 43 35)(20 116 44 92)(21 61 45 37)(22 118 46 94)(23 63 47 39)(24 120 48 96)(26 122 50 74)(28 124 52 76)(30 126 54 78)(32 128 56 80)(73 81 121 105)(75 83 123 107)(77 85 125 109)(79 87 127 111)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)

G:=sub<Sym(128)| (1,65,47,77)(2,78,48,66)(3,67,41,79)(4,80,42,68)(5,69,43,73)(6,74,44,70)(7,71,45,75)(8,76,46,72)(9,100,122,20)(10,21,123,101)(11,102,124,22)(12,23,125,103)(13,104,126,24)(14,17,127,97)(15,98,128,18)(16,19,121,99)(25,63,105,95)(26,96,106,64)(27,57,107,89)(28,90,108,58)(29,59,109,91)(30,92,110,60)(31,61,111,93)(32,94,112,62)(33,83,113,51)(34,52,114,84)(35,85,115,53)(36,54,116,86)(37,87,117,55)(38,56,118,88)(39,81,119,49)(40,50,120,82), (1,97,5,101)(2,98,6,102)(3,99,7,103)(4,100,8,104)(9,72,13,68)(10,65,14,69)(11,66,15,70)(12,67,16,71)(17,43,21,47)(18,44,22,48)(19,45,23,41)(20,46,24,42)(25,51,29,55)(26,52,30,56)(27,53,31,49)(28,54,32,50)(33,59,37,63)(34,60,38,64)(35,61,39,57)(36,62,40,58)(73,123,77,127)(74,124,78,128)(75,125,79,121)(76,126,80,122)(81,107,85,111)(82,108,86,112)(83,109,87,105)(84,110,88,106)(89,115,93,119)(90,116,94,120)(91,117,95,113)(92,118,96,114), (1,119,103,95)(2,64,104,40)(3,113,97,89)(4,58,98,34)(5,115,99,91)(6,60,100,36)(7,117,101,93)(8,62,102,38)(9,82,70,106)(10,27,71,51)(11,84,72,108)(12,29,65,53)(13,86,66,110)(14,31,67,55)(15,88,68,112)(16,25,69,49)(17,57,41,33)(18,114,42,90)(19,59,43,35)(20,116,44,92)(21,61,45,37)(22,118,46,94)(23,63,47,39)(24,120,48,96)(26,122,50,74)(28,124,52,76)(30,126,54,78)(32,128,56,80)(73,81,121,105)(75,83,123,107)(77,85,125,109)(79,87,127,111), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)>;

G:=Group( (1,65,47,77)(2,78,48,66)(3,67,41,79)(4,80,42,68)(5,69,43,73)(6,74,44,70)(7,71,45,75)(8,76,46,72)(9,100,122,20)(10,21,123,101)(11,102,124,22)(12,23,125,103)(13,104,126,24)(14,17,127,97)(15,98,128,18)(16,19,121,99)(25,63,105,95)(26,96,106,64)(27,57,107,89)(28,90,108,58)(29,59,109,91)(30,92,110,60)(31,61,111,93)(32,94,112,62)(33,83,113,51)(34,52,114,84)(35,85,115,53)(36,54,116,86)(37,87,117,55)(38,56,118,88)(39,81,119,49)(40,50,120,82), (1,97,5,101)(2,98,6,102)(3,99,7,103)(4,100,8,104)(9,72,13,68)(10,65,14,69)(11,66,15,70)(12,67,16,71)(17,43,21,47)(18,44,22,48)(19,45,23,41)(20,46,24,42)(25,51,29,55)(26,52,30,56)(27,53,31,49)(28,54,32,50)(33,59,37,63)(34,60,38,64)(35,61,39,57)(36,62,40,58)(73,123,77,127)(74,124,78,128)(75,125,79,121)(76,126,80,122)(81,107,85,111)(82,108,86,112)(83,109,87,105)(84,110,88,106)(89,115,93,119)(90,116,94,120)(91,117,95,113)(92,118,96,114), (1,119,103,95)(2,64,104,40)(3,113,97,89)(4,58,98,34)(5,115,99,91)(6,60,100,36)(7,117,101,93)(8,62,102,38)(9,82,70,106)(10,27,71,51)(11,84,72,108)(12,29,65,53)(13,86,66,110)(14,31,67,55)(15,88,68,112)(16,25,69,49)(17,57,41,33)(18,114,42,90)(19,59,43,35)(20,116,44,92)(21,61,45,37)(22,118,46,94)(23,63,47,39)(24,120,48,96)(26,122,50,74)(28,124,52,76)(30,126,54,78)(32,128,56,80)(73,81,121,105)(75,83,123,107)(77,85,125,109)(79,87,127,111), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128) );

G=PermutationGroup([[(1,65,47,77),(2,78,48,66),(3,67,41,79),(4,80,42,68),(5,69,43,73),(6,74,44,70),(7,71,45,75),(8,76,46,72),(9,100,122,20),(10,21,123,101),(11,102,124,22),(12,23,125,103),(13,104,126,24),(14,17,127,97),(15,98,128,18),(16,19,121,99),(25,63,105,95),(26,96,106,64),(27,57,107,89),(28,90,108,58),(29,59,109,91),(30,92,110,60),(31,61,111,93),(32,94,112,62),(33,83,113,51),(34,52,114,84),(35,85,115,53),(36,54,116,86),(37,87,117,55),(38,56,118,88),(39,81,119,49),(40,50,120,82)], [(1,97,5,101),(2,98,6,102),(3,99,7,103),(4,100,8,104),(9,72,13,68),(10,65,14,69),(11,66,15,70),(12,67,16,71),(17,43,21,47),(18,44,22,48),(19,45,23,41),(20,46,24,42),(25,51,29,55),(26,52,30,56),(27,53,31,49),(28,54,32,50),(33,59,37,63),(34,60,38,64),(35,61,39,57),(36,62,40,58),(73,123,77,127),(74,124,78,128),(75,125,79,121),(76,126,80,122),(81,107,85,111),(82,108,86,112),(83,109,87,105),(84,110,88,106),(89,115,93,119),(90,116,94,120),(91,117,95,113),(92,118,96,114)], [(1,119,103,95),(2,64,104,40),(3,113,97,89),(4,58,98,34),(5,115,99,91),(6,60,100,36),(7,117,101,93),(8,62,102,38),(9,82,70,106),(10,27,71,51),(11,84,72,108),(12,29,65,53),(13,86,66,110),(14,31,67,55),(15,88,68,112),(16,25,69,49),(17,57,41,33),(18,114,42,90),(19,59,43,35),(20,116,44,92),(21,61,45,37),(22,118,46,94),(23,63,47,39),(24,120,48,96),(26,122,50,74),(28,124,52,76),(30,126,54,78),(32,128,56,80),(73,81,121,105),(75,83,123,107),(77,85,125,109),(79,87,127,111)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)]])

44 conjugacy classes

class 1 2A···2G4A···4H4I···4T8A···8P
order12···24···44···48···8
size11···11···14···44···4

44 irreducible representations

dim111112222
type+++++-
imageC1C2C2C2C4D4Q8C4○D4C8○D4
kernelC42.23Q8C22.7C42C424C4C2×C4⋊C8C2.C42C42C42C2×C4C22
# reps1412822816

Matrix representation of C42.23Q8 in GL6(𝔽17)

040000
400000
0013000
009400
0000111
0000616
,
1600000
0160000
0016000
0001600
000040
000004
,
010000
100000
0013000
0001300
0000713
0000410
,
530000
14120000
0041300
0081300
000038
0000914

G:=sub<GL(6,GF(17))| [0,4,0,0,0,0,4,0,0,0,0,0,0,0,13,9,0,0,0,0,0,4,0,0,0,0,0,0,1,6,0,0,0,0,11,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,13,0,0,0,0,0,0,13,0,0,0,0,0,0,7,4,0,0,0,0,13,10],[5,14,0,0,0,0,3,12,0,0,0,0,0,0,4,8,0,0,0,0,13,13,0,0,0,0,0,0,3,9,0,0,0,0,8,14] >;

C42.23Q8 in GAP, Magma, Sage, TeX

C_4^2._{23}Q_8
% in TeX

G:=Group("C4^2.23Q8");
// GroupNames label

G:=SmallGroup(128,564);
// by ID

G=gap.SmallGroup(128,564);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,120,422,723,58,124]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^4=1,d^2=b*c^2,a*b=b*a,c*a*c^-1=a*b^2,d*a*d^-1=a^-1,b*c=c*b,b*d=d*b,d*c*d^-1=a^2*c^-1>;
// generators/relations

׿
×
𝔽